BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20260204T123726EST-8903dPt1Be@132.216.98.100 DTSTAMP:20260204T173726Z DESCRIPTION:Title: Equivariant Iwasawa theory for Artin motives and applica tions\n \n Abstract:  Several years ago\, Greither and I formulated and gave a conditional proof  of an Equivariant Main Conjecture (EMC) in Iwasawa t heory for Artin motives over arbitrary global fields. We showed that\, via Iwasawa codescent\, this statement implies strong versions of the Brumer- Stark and Coates-Sinnott conjectures concerning special values of equivari ant  Artin L-functions at non-positive integers. \n \n In this lecture\, I w ill describe my recent joint work with Rusiru Gambheera\, in which we give  unconditional proofs of two new versions of the EMC: one involving the Se lmer modules of Burns-Kurihara-Sano and the other involving the Ritter-Wei ss modules. I will then relate these results to my earlier work with Greit her and discuss their applications to proving various conjectures \n on spe cial values of equivariant Artin L-functions. These advances rely cruciall y on the recent breakthrough results of Dasgupta and Kakde on Hilbert's tw elfth problem for totally real number fields.\n DTSTART:20260212T151500Z DTEND:20260212T161500Z LOCATION:Room 1104\, Burnside Hall\, CA\, QC\, Montreal\, H3A 0B9\, 805 rue Sherbrooke Ouest SUMMARY:Cristian Popescu (University of California) URL:/smerg/channels/event/cristian-popescu-university- california-370728 END:VEVENT END:VCALENDAR